CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111

2/2022fa/

Today: 2D arrays and images

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements

Last time

O
O

2D arrays
Triangular traversal

Today

O
O

More 2D arrays
Working with images

Announcements

O
O

Discussion 07 exercise due tonight 10/13 at 9 PM (check off and MATLAB grader)
Discussion 08 (yesterday) had optional problems — problems to help you study for
prelim 1
Project 4 released tonight or tomorrow (will be due 10/26)
Prelim 1 is next Tuesday 10/18 from 7:30 - 9 in Klarman Hall (KG70). Students
with approved exceptions please check CMS for your time/location.
Consultants will be holding tutoring (sign up on CMS)

m Thurs (10/13), Sunday (10/16), and Monday (10/17)
Review session Sunday 10/16 from 6:30 - 8 PM in Philips 101

Extra notes about the prelim

e You do not need to write comments on the exam (you can if you want though)

e Any useful MATLAB built-in functions (like factorial, rand, ceil) that you might
need on the exam will be listed on the front page of the exam

e You won’t be marked down for most formatting things (for example, indenting
in a for-loop or if-statement) but please still try to use good formatting

You may find the following MATLAB predefined functions useful: abs, sqrt, rem, floor, ceil, rand,
zeros, ones, linspace, length, input, fprintf, disp

Examples: rem(5,2) — 1, the remainder of 5 divided by 2
rand() — a random real value in the interval (0,1)
abs(-3) — 3, absolute value
floor(6.9), floor(6) — 6, rounds down to the nearest integer
ceil(8.1), ceil(9) — 9, rounds up to the nearest integer
length([2 4 8]) — 3, length of a vector
zeros(1,4) — 1 row 4 columns of zeros
linspace(3,5,10) — a vector of 10 real numbers evenly distributed in the interval [3,5]

Triangular traversal: recap

% traverse the green cells
[nr, nc] = size(A);
for r = 1:nr

for ¢ = 1:r-1

% Do something with A(r,c)

end
end
Workspace Workspace Workspace Workspace
r 1 r 2 r 3 r 10
c 1:0 T C 1:1 T C 1:2 T e c 1:9
(does nothing) (c only takes on (c only takes on (c only takes on
value 1) values 1,2) value 1, ..., 9)

Application of 2D arrays: images

Matrix of size 1080 x 1920
1080 x 1920 = 2,073,600 pixels e

235 231 231 234 226 226 224 222 222 223

209 211 220 230 236 235 232 228 227 229

132 128 132 163 168 171 174 175 172 162 /

102 87 72 74 77 78 83 96 107 103 !

109 104 98 100 108 110 110 M3 M9 122 /

94 95 99 102 105 105 113 118 94 99 |/

Images can be encoded in different ways

e Common formats include
o JPG (or JPEG): better at compressing images
o PNG: preserves all details but better for transparent backgrounds

e MATLAB (and many of the things we’ll do) works well with many different

image formats
e We'll work mostly with JPG files but the most important function will also work

for PNG files
o imread: read an image file and convert it to a numeric array they we can work with

o imshow: display the numeric array as an image
o imwrite: Write an array into an image file

Application of 2D arrays: images

Black corresponds to O
White corresponds to 255

235 231 231 234 226 226 224 222 222 223

209 211 220 230 236 235 232 228 227 229

132 128 132 163 168 171 174 175 172 162

/' Each integer in this array
102 8 72 74 77 78 8 9 107 103 corresponds to a single pixel and is
of type uint8

109 104 98 100 108 110 110 M3 M9 122 /

94 95 99 102 105 105 113 118 94 99 / (Uintg: integer between O and 255)

Example: Let’s put a picture in a frame

Things to do:

1.

Read (store) the image from your computer
memory and convert it into an array with
imread

Show original image with imshow

Assign a gray value to the edge pixels (edge
values of the matrix)

Show the manipulated picture with imshow

Reading and showing an image

% read the image and convert it to a uint8 array img
img = imread('babyYoda bw.jpg');

% show the image in a figure window
imshow(img)

Warning: the image must be in the
same folder as the current script or
else you will get an error message
“File ‘babyYoda bw.png’ does not

exist.”

Code to frame a grayscale picture

img = imread('babyYoda_bw.jpg');
imshow(img)

% change the color of edge pixels

imshow(img)

Code to frame a grayscale picture

img = imread('babyYoda_bw.jpg");
imshow(img)

% change the color of edge pixels
width = 20;

frameColor = 200; % light gray
[nr, nc] = size(img);

% loop through pixels and change pixel color if at border

imshow(img)

pixel

Code to frame a grayscale picture

img = imread('babyYoda_bw.jpg");
imshow(img)

% change the color of edge pixels
width = 20;
frameColor = 200; % light gray
[nr, nc] = size(img);
for r = 1l:nr

for ¢ = 1:nc

% change img(r,c) if we’re at a border pixel
end

end
imshow(img)

Code to frame a grayscale picture

img = imread('babyYoda_bw.jpg');
imshow(img)

Remember: img is a 2D
array of uint8 integers
but frameColor is of
type double. Is this
fine?

% change the color of edge pixels
width = 20;
frameColor = 200; % light gray
[nr, nc] = size(img);
for r = 1l:nr
for ¢ = 1:nc
if r <= width || r > nr-width || ¢ <= width || ¢ > nc-width
img(r,c) = frameColor;
end

Yes! MATLAB will automatically
do the conversion from double
to uint8!

end
end
imshow(img)

Code to frame a grayscale picture

img = imread('babyYoda_bw.jpg");

imshow(im

tine) Can we be more
% change the color of edge pixels efficient?
width = 20;

frameColor = 200; % light gray
[nr, nc] = size(img);
for r = 1l:nr
for c = 1:nc
if r <= width || r > nr-width || ¢ <= width || ¢ > nc-width
img(r,c) = frameColor;
end

end
end
imshow(img)

Accessing a submatrix

e Mrefers to the whole matrix
e M(3,5) refers to the element in the 3rd row and 5th column of M

Accessing a submatrix

e M refers to the whole matrix
e M(3,5) refers to the element in the 3rd row and 5th column of M
e M(2:3, 1:4) refersto a submatrix of M

End column index
end row index

Start row index

Start column index

Changing all values in a submatrix

end indicates that | want to the last row (the end)

M(2:end, 1:4) = 99*ones(2,4);

% easier syntax that works the same!
M(2:end, 1:4) = 99;

More efficient code to frame an image

img = imread('babyYoda_bw.jpg');
imshow(img)

% change the color of edge pixels
width = 20;

frameColor = 200; % light gray
[nr, nc] = size(img);

img(1:width,:) = frameColor; % change top rows
% add code here to deal with bottom, left, and right borders

imshow(img)

How can we change the last n columns of a 2D array to 5?

A(n) =5;

A(: , nc-n+l:end = 5;
(, ;)

7
A(n:end , :) = 5;

A(: , n:end)

1l
U1
e

A(nc-n+l:end , :)

5 5
O ==
n n M
o w M

Color images

A color image is made up of RGB matrices — 3D array!

Now we need 3 indices to represent elements:
img colr(r,c,l)

r: row
c: column
1: layer

For color images,
There are 3 layers (R, G, B)!

for uint8 images,
@ <= img _colr(r,c,1l) <= 255

Throwing errors: say we are writing a code that only works
for grayscale images

img = imread('babyYoda.jpg');
[nr, nc, nl] = size(img); % stores #rows, #cols, #layers
% nl = 3 for color image, nl = 1 for grayscale image

if nl ==
error('The image you are processing is color, not grayscale.')
end

The error function “throws
an error” whenever it is
evaluated. (The code stops
and the error message is
printed to the command
line)

% do something with grayscale image

